

**Direcció General de Qualitat Ambiental** Servei per a la Prevenció de la Contaminació Acústica i Lumínica





### How clouds are amplifying (or not) the effects of ALAN

S.J. Ribas, J. Torra, F. Figueras, S. Paricio & R. Canal-Domingo

Parc Astronòmic Montsec, Universitat de Barcelona & Servei per la Prevenció de la Cont. Acústica i Lumínica



## **Measuring Night Sky Brightness**

- There are different approaches to evaluate Night Sky Brightness to estimate Light Pollution:
  - From the space using satellites (e.g. Falchi et al 2016) or from International Space Station (e.g. Sánchez de Miguel 2015).
  - Measuring the night sky brightness from the ground with telescopes or specially designed devices.
- In our case we have done our work with ground-based measurements using SQM (Sky Quality Meter) devices.





## **Catalan Light Pollution Network (XCLCat)**

- In cooperation with Catalan Service Against Light Pollution we have started a pilot plan of the Xarxa de Contaminació Lumínica de Catalunya (XCLCat).
- To establish a measurement network we have defined composition, operation procedures and sites of each station.
- Each station is based on SQM-L devices, mainly LE (ethernet) but also LU (USB) can be used. All the devices have been intercalibrated to obtain comparable data.
- Data collection and storing is made using PySQM software (Nievas et al 2014). All the data sets are uploaded and stored in our server for the data processing and scientific analysis.

## **Intercalibration of Sky Quality Meters**

- Intercalibration consists in a cross-calibration method based in pairing all the instruments. With this idea all the instruments will show the same value for the same situation.
- The initial accuracy of SQM is around 10% and with this method could be improved to 1% (eg. den Outer 2011, Bará 2013 o Ribas 2015).
- All the SQM devices of XCLCat have been intercalibrated in the station located in Centre d'Observació de l'Univers in Àger (Lleida, SPAIN).



## **Intercalibration of Sky Quality Meters**

- Our strategy is based in the definition of a virtual reference device (*patró*). This virtual device is defined from all the instruments in calibration. From this reference one by one all instruments are tuned.
- Different kind of fittings have been tested and we have seen an offset is good enough for our purposes.

$$mag_{patro}(t) = \frac{1}{n} \sum_{i=0}^{n} mag_i(t)$$

 $\text{Offset} = \frac{1}{d} \sum_{i=1}^{n} \left( mag_{patro}(i) - mag_{aparell}(i) \right)$ 

| Num. Dispositiu | Offset | $\sigma_{offset}$ |
|-----------------|--------|-------------------|
| SQM-LE-1        | -0.079 | 0.013             |
| SQM-LE-2        | 0.054  | 0.011             |
| SQM-LE-3        | 0.025  | 0.009             |



### **Network of SQM stations in Catalunya**



| Àger (COU) | Sample       | Num.<br>Measurements | Magnitude<br>(mag/arcsec <sup>2</sup> ) | $\sigma_{mag}$ (mag/arcsec <sup>2</sup> ) |  |
|------------|--------------|----------------------|-----------------------------------------|-------------------------------------------|--|
|            | Total        | 361948               | 20.238                                  | 1.575                                     |  |
| Balaguer   | Without Moon | 183564               | 21.380                                  | 0.430                                     |  |
|            | Sample       | Num.<br>Measurements | Magnitude<br>(mag/arcsec <sup>2</sup> ) | $\sigma_{mag}$ (mag/arcsec <sup>2</sup> ) |  |
|            | Total        | 204441               | 18.131                                  | 1.370                                     |  |
|            | Without Moon | 102356               | 18.429                                  | 1.419                                     |  |
| Barcelona  | Sample       | Num.<br>Measurements | Magnitude<br>(mag/arcsec <sup>2</sup> ) | $\sigma_{mag}$ (mag/arcsec <sup>2</sup> ) |  |
|            | Total        | 229801               | 16.674                                  | 1.176                                     |  |
|            | Without Moon | 113146               | 16.747                                  | 1.235                                     |  |
| Lleida     | Sample       | Num.<br>Measurements | Magnitude<br>(mag/arcsec <sup>2</sup> ) | $\sigma_{mag}$ (mag/arcsec <sup>2</sup> ) |  |
|            | Total        | 234304               | 16.670                                  | 0.868                                     |  |
|            | Without Moon | 115680               | 16.711                                  | 0.923                                     |  |
| OAdM       | Sample       | Num.<br>Measurements | Magnitude<br>(mag/arcsec <sup>2</sup> ) | $\sigma_{mag}$ (mag/arcsec <sup>2</sup> ) |  |
|            | Total        | 246865               | 20.253                                  | 1.721                                     |  |
|            | Without Moon | 123652               | 21.480                                  | 0.587                                     |  |

# **Clouds and Night Sky Brightness**

### **Evidences:**

- Clouds and fog can generate oscillations in the measure of SQM's.
- It is well known that clouds or fog increase NSB in urban areas (e.g. Kyba 2011)
- We have ceilometer devices close to some SQM stations. Barcelona and Montsec (Àger-COU).





### Fog ...

#### **Balaguer & Lleida**

- Without ceilometer data we can also detect some effects. This is the case of dense fog.
- Station in Balaguer, in a small size city, clearly show lunar cycle. In Lleida this cycle is not visible.
- Both station show three red vertical stripes. These brightest values are related to three huge fog periods. NSB increases up to 14-15 mag, the brightest measurements of our network.





### **Time Evolution**

### **Observatori Astronòmic del Montsec**

- The most common values are located in 21-22 mag.
- Scattered values moves towards darkest positions of the plot.
- What is the origin of this scattered values?



## **Time Evolution**

#### **Balaguer, Lleida & Barcelona**

- In the small city of Balaguer the highest density is located in values between 18-20 magnitudes.
- Scattered values moves towards brightest side of the plot.
- In winter we can see the extremely bright values related to dense fog days.
- In Lleida we can see again the fog effect and we have detected an additional stripe related to Christmas lighting.
- In Barcelona we can see values moving towards brightest side. In this case there are not fog episodes, so no fog stripes are appearing.



# **Clouds and Night Sky Brightness**

### Adding ceilometer data:

- Using only astronomical night and without Moon data.
- > We have used ceilometer data in Barcelona from August to November 2015.
- Clouds are increasing the NSB in all the cases. Low clouds show the highest increase in NSB, with values up to 2 mag brighter.

#### Barcelona

| Sample        | Num. Measurements | Magnitude<br>(mag/arcsec <sup>2</sup> ) | σ <sub>mag</sub><br>(mag/arcsec <sup>2</sup> ) |  |
|---------------|-------------------|-----------------------------------------|------------------------------------------------|--|
| Total         | 27645             | 16.789                                  | 1.210                                          |  |
| w/o Clouds    | 14375             | 17.707                                  | 0.398                                          |  |
| With Clouds   | 13270             | 15.794                                  | 0.987                                          |  |
| Low Clouds    | 8427              | 15.528                                  | 0.958                                          |  |
| Medium Clouds | 3642              | 16.075                                  | 0.844                                          |  |
| High Clouds   | 1200              | 16.813                                  | 0.630                                          |  |

# **Clouds and Night Sky Brightness**

- In Montsec Protected area we are using ceilometer data obtained from November 2014 to April 2015.
- In dark places clouds are not always reflecting artificial light, because this is almost not present. The effect of clouds is blocking the natural light from the sky (stars, Milky Way, etc).
- This feature is specially clear with low clouds providing the darkest values ever measured with the SQM station (limit of the instrument). In the other side high clouds can still slightly increase the NSB.

|             | OAdM            |                                         |                                           | Âger - COU      |                                         |                                              |
|-------------|-----------------|-----------------------------------------|-------------------------------------------|-----------------|-----------------------------------------|----------------------------------------------|
| Sample      | Num.<br>Measur. | Magnitude<br>(mag/arcsec <sup>2</sup> ) | $\sigma_{mag}$ (mag/arcsec <sup>2</sup> ) | Num.<br>Measur. | Magnitude<br>(mag/arcsec <sup>2</sup> ) | $\sigma_{mag}$<br>(mag/arcsec <sup>2</sup> ) |
| Total       | 66492           | 21.472                                  | 0.595                                     | 72838           | 21.385                                  | 0.437                                        |
| w/o Clouds  | 31752           | 21.439                                  | 0.561                                     | 34657           | 21.414                                  | 0.393                                        |
| With Clouds | 34740           | 21.502                                  | 0.623                                     | 38181           | 21.358                                  | 0.471                                        |
| Low Clouds  | 7837            | 21.818                                  | 0.883                                     | 8581            | 21.515                                  | 0.701                                        |
| Med. Clouds | 15537           | 21.500                                  | 0.600                                     | 17023           | 21.352                                  | 0.441                                        |
| High Clouds | 11366           | 21.286                                  | 0.209                                     | 12577           | 21.258                                  | 0.221                                        |

13

## Conclusions

- For first time Catalunya has a a permanent network to evaluate NSB. It has been started with 9 SQM stations. All the SQM devices have been previously intercalibrated.
- Time evolution during showed scattered values moving towards dark side of the plot for natural protected areas and to bright side for urban places.
- Annual study allowed us to identify the brightest values measured in urban areas. These are values are around 14 mag and are directly related with dense fog episodes in Lleida an Balaguer locations.
- Combining SQM data with ceilometer (clouds) data confirm the effect of increasing the NSB in urban areas. In the case of Barcelona increases up to 2 magnitudes of NSB.
- For first time we have shown quantitative values of clouds effects in dark places (Montsec). Clouds can darken the NSB, obtaining the darkest values of all the data sets.



**Direcció General de Qualitat Ambiental** Servei per a la Prevenció de la Contaminació Acústica i Lumínica





## Thanks for your attention!

### E-mail: sjribas@montsec.cat

